30 research outputs found

    MIDI-VAE: Modeling Dynamics and Instrumentation of Music with Applications to Style Transfer

    Full text link
    We introduce MIDI-VAE, a neural network model based on Variational Autoencoders that is capable of handling polyphonic music with multiple instrument tracks, as well as modeling the dynamics of music by incorporating note durations and velocities. We show that MIDI-VAE can perform style transfer on symbolic music by automatically changing pitches, dynamics and instruments of a music piece from, e.g., a Classical to a Jazz style. We evaluate the efficacy of the style transfer by training separate style validation classifiers. Our model can also interpolate between short pieces of music, produce medleys and create mixtures of entire songs. The interpolations smoothly change pitches, dynamics and instrumentation to create a harmonic bridge between two music pieces. To the best of our knowledge, this work represents the first successful attempt at applying neural style transfer to complete musical compositions.Comment: Paper accepted at the 19th International Society for Music Information Retrieval Conference, ISMIR 2018, Paris, Franc

    JamBot: Music Theory Aware Chord Based Generation of Polyphonic Music with LSTMs

    Full text link
    We propose a novel approach for the generation of polyphonic music based on LSTMs. We generate music in two steps. First, a chord LSTM predicts a chord progression based on a chord embedding. A second LSTM then generates polyphonic music from the predicted chord progression. The generated music sounds pleasing and harmonic, with only few dissonant notes. It has clear long-term structure that is similar to what a musician would play during a jam session. We show that our approach is sensible from a music theory perspective by evaluating the learned chord embeddings. Surprisingly, our simple model managed to extract the circle of fifths, an important tool in music theory, from the dataset.Comment: Paper presented at the 29th International Conference on Tools with Artificial Intelligence, ICTAI 2017, Boston, MA, US

    Telling BERT's full story: from Local Attention to Global Aggregation

    Full text link
    We take a deep look into the behavior of self-attention heads in the transformer architecture. In light of recent work discouraging the use of attention distributions for explaining a model's behavior, we show that attention distributions can nevertheless provide insights into the local behavior of attention heads. This way, we propose a distinction between local patterns revealed by attention and global patterns that refer back to the input, and analyze BERT from both angles. We use gradient attribution to analyze how the output of an attention attention head depends on the input tokens, effectively extending the local attention-based analysis to account for the mixing of information throughout the transformer layers. We find that there is a significant discrepancy between attention and attribution distributions, caused by the mixing of context inside the model. We quantify this discrepancy and observe that interestingly, there are some patterns that persist across all layers despite the mixing.Comment: Accepted at EACL 202
    corecore